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Abebllct. The classical Wheeler-Feynman absorber theory with a postulate of Lorentz- 
invariant zero-point electromagnetic radiation is proposed to explain quantum phenomena 
in a similar manner to that of stochastic electrodynamics. For this purpose, Cramer’s model 
of a ‘minimum emitter-absorber transaction’ is extended to the case where zero-point 
radiation exists, in the context of the classical Wheeler-Feynman theory. The Einstein- 
Podolski-Rosen paradox and the quantum levels of a charged simple harmonic oscillator 
are derived from the theory. It is shown that the condition for a transaction plays an 
essential role, such as in the radiative balance of a simple harmonic oscillator. 

1. Introduction 

In a recent paper, Cramer (1980) presented an explanation of the Einstein, Podolski 
and Rosen (1935) (EPR) paradox on the basis of a quantum mechanical formulation of 
the Wheeler-Feynman absorber theory (see e.g. Hoyle and Narliker 1969, 1971, 
Davies 1970). His explanation is naturally concerned with the ‘non-locality’ aspect of 
the EPR paradox: he developed a model based on the half-retarded and half-advanced 
field electrodynamics of Wheeler and Feynman (1945, 1949) and called it a ‘minimum 
emitter-absorber transaction’. Extending his idea to a simultaneous double trans- 
action, Cramer applied it to discuss the result of the polarisation experiment of a 
double-photon decay of Freedman and Clauser (1972) and explained the non-locality 
aspect of the EPR paradox. The EPR paradox has two distinct aspects: the incomplete- 
ness and the non-locality (or the non-separability of two quantum substates once they 
have interacted in quantum theory) (cf Einstein et al 1935). Cramer’s argument, a 
quantum mechanical one, naturally accepted the quantum mechanical description of 
reality as being complete and explained the non-locality aspect of quantum 
phenomena, pointed out in the paper by EPR, as being non-contradictory. 

As for the incompleteness aspect of quantum theory, an extensive controversy has 
arisen since the establishment of quantum mechanics. The interpretation of Bohr and 
others, who are associated with the ‘Copenhagen school’, found favour with a majority 

8 The work was initiated while the author was at the School of Cosmic Physics, Dublin Institute for Advanced 
Studies, Dublin, Ireland. 
11 Present address: Regional Technical College, Athlone, Ireland. 
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of physicists. Furthermore, a theorem by von Neumann (1955) concerning the non- 
possibility of any hidden-variables theory influenced certain physicists to believe that 
the incompleteness aspect of quantum theory is not a defect but is the ultimate nature of 
physical theory and no further inquiry into the problem is fruitful. However, by the 
efforts of physicists who were not satisfied by the quantum znod~&dcal interpretation of 
physical reality, hidden-variables theories, the Brownian m o b  inPQpretation of 
quantum phenomena, stochastic electrodynamics (which we are going to discuss), plus 
other theories grew out of the attempts to replace the quantum axiom by other axioms 
which retain the character of classical physics as their foundation. Many of these 
theories aim at a complete description, or a better understanding of physical reality than 
that afforded by quantum mechanics. These theories have succeeded in explaining 
certain quantum phenomena without the use of the quantum axiom, and, furthermore, 
some of the theories make more predictions or different predictions than those of 
quantum mechanics (for example, the hidden-variables theory of Bohm and Bub 
(1966)). Bell (1964) brought the academic problem-the different predictions of local 
hidden-variables theories and quantum mechanics-into the domain of experimental 
test by formulating Bell’s inequality, which has been tested experimentally by various 
groups using methods based on various phenomena. The experimental results in 
general favour the predictions of quantum mechanics rather than those of local 
hidden-variables theories. However, Aspect (1976) has proposed a more sophisticated 
experiment to test the validity of quantum mechanics. For a typical case, we deal with 
the experiment of Freedman and Clauser (1972). 

With the help of the idea of Cramer’s transaction, we study the same problem but 
along the lines of stochasticelectrodynamics, i.e. without the use of the quantum axiom. 
In this paper we present a theory to deal with the non-locality aspect of the Freedman- 
Clauser experiment in connection with the EPR paradox in the context of classical 
theory, i.e. the Wheeler-Feynman absorber theory with a postulate of the existence of a 
zero-point electromagnetic radiation in the universe. In our theory, the non-locality 
aspect of the EPR paradox and the polarisation experiment of Freedman and Clauser 
can be explained in a similar manner to Cramer’s quantum formulation of the 
Wheeler-Feynman absorber theory. Thus, whether one uses a quantum mechanical 
formulation or a classical formulation of the Wheeler-Feynman absorber theory 
depends on how one wishes to respond to the incompleteness aspect brought about by 
the EPR paradox; that the two aspects, i.e. non-locality and incompleteness, are closely 
connected is shown by Einstein as follows. The completeness of the quantum 
mechanical description by means of the wavefunction, and the locality premise, are not 
compatible as shown by Einstein er a1 (1935) and also quoted by Bohr (1949). Those 
who use the quantum mechanical formulation of the Wheeler-Feynman theory need to 
explain only the non-locality aspect, while those who use the classical version of the 
Wheeler-Feyman theory need to explain both aspects within their theories. 

Stochastic electrodynamics, which aims at exploiping both aspects of quantum 
phenomena, has been developed over more than a decade by several authors (e.g. 
Marshall 1963, Santa 1974, de la Pefia-Auerbach 1978, de la Pefia-Auerbach and 
Cetto 1976). It had several successes in explainiqpcertain quantum ghenomena on the 
basis of classical electrodynamics of the MPxwell-Lorentz theory with the addition of an 
ad hoc postulate of stochastic zero-point electromagnetic radiation (or a zero-point 
fluctuation field) existing as a b w o u n d  radiation in the universe. The zero-point 
radiation was first used by Marshall (1963) to explain the quantum mechanical 
behaviour of a charged classical harmonic oscillator in its ground state. Boyer (1969), 
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following the idea, demonstrated an important character of the radiation, i.e. the 
zero-point radiation is Lorentz invariant, and derived Planck’s law of radiation only by 
incorporating the zero-point radiation into classical statistical mechanics without the 
use of the quantum axiom. Furthermore, several authors have extended stochastic 
electrodynamics (by incorporating zero-point radiation) to explain a wider variety of 
quantum phenomena. Such are: the simple harmonic oscillator discussed above; the 
Casimir effect; the excited states of a simple harmonic oscillator; the Lamb shift; the 
decay of the excited states of atoms; and other phenomena. 

According to the belief of some of those working in stochastic electrodynamics, the 
only difficulty they encounter is a mathematical one, and if the difficulty were overcome, 
the theory could explain all the quantum phenomena without recourse to the quantum 
axiom. However, stochastic electrodynamics currently has its intrinsic weakness. For 
example, although the energy levels of a harmonic oscillator in stochastic elec- 
trodynamics agree with those of quantum mechanics, a simple harmonic oscillator 
undergoes stochastic motion, losing or acquiring the energy and momentum through its 
interaction with the zero-point radiation. Therefore, the energy of a particle undergo- 
ing a simple harmonic oscillation (in its lowest energy state, say) takes any value at a 
certain instant of time with a certain probability due to a random walk process, and only 
the average over a sufficiently long period of time agrees with the prediction of quantum 
mechanics (see Santos 1974). The condition of radiative balance, discussed by Marshall 
and Claverie (1980), is not inherent in stochastic electrodynamics. In this respect, the 
theory does not explicitly show the non-locality aspect of quantum phenomena such as 
is described by Cramer’s emitter-absorber transaction model. But the theory may give 
a different prediction from quantum mechanics for a properly conducted double- 
photon correlation experiment such as that proposed by Aspect (1976) and discussed by 
Marshall (1980), for example. 

We develop a new theory of classical stochastic electrodynamics which replaces 
classical Maxwell-Lorentz electrodynamics (in which only a fully retarded field is 
utilised) by using a ‘half-retarded and half-advanced fields’ formulation of the 
Wheeler-Feynman theory?. 
As is well known, the Wheeler-Feynman absorber theory has some distinct features, 

but shares many features in common with Maxwell-Lorentz electrodynamics. There- 
fore, stochastic electrodynamics with the Wheeler-Feynman absorber theory has many 
features in common with, but has a distinct feature from, the current theory of stochastic 
electrodynamics. For example, the dispersion in the value of the energy of a stationary 
state, under the influence of zero-point electromagnetic radiation, can be removed in 
our theory when the Wheeler-Feynman theory and thus the transaction of an ‘emitter- 
absorber’ are incorporated. In this theory, the condition for an ‘emitter-absorber 
transaction’ is derived. To apply the transaction condition in our theory, we have 
extended the ‘minimum emitter-absorber transaction’ of Cramer to the case where 
zero-point electromagnetic radiation is present. We will show, in an example of a 
charged simple harmonic oscillator, that the condition of transaction for an emitter- 
absorber system plays the role of the radiative balance condition, and retains the system 
adiabatically invariant. Thus, possible solution of the EPR paradox within the frame- 
work of classical electrodynamics, with an additional postulate of the existence of a 

t Some consideration has been given to the Wheeler-Feynman approach in stochastic electrodynamics by 
Braffort and Tzara (1954) and Marshall (1968). The authors are grateful to one of the referees for this 
information. 
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zero-point electromagnetic radiation, becomes much more feasible. We explore this 
possibility and discuss it in this paper. 

A consequence of the existence of zero-point electromagnetic radiation is that any 
system of particles in the universe, such as the emitter-absorber system considered by 
Cramer, can no longer be considered as an isolated system. Thus, we do not choose to 
take the usual mumption for the boundary conditions in the Wheeler-Feynman 
absorber theory, but, instead, both the incoming and the outgoing fields are non-zero 
and are given by the zero-point electromagnetic radiation considered in stochastic 
electrodynamics. 

The total field acting on particle C as a result of the rest of the particles (labelled 
j )  in the universe is (see Davies 1974) 

F i g ,  = 4 [F:2t + F 2 ,  ] + $[Fin + F0"t]. (1) 

(Here, the italic superscript in brackets labels the particle.) Since the background 
radiation $&+FOut] has its source outside the system (i.e. on the past light-cone and 
the future light-cone), this field is a solution of the homogeneous Maxwell equations 
valid inside the boundary-and thus it contains certain ambiguity unless the boundary 
surface is clearly defined. The fields, $Fin and $Pout, at the past and the future boundary 
surfaces are, respectively, identified to be the zero-point electromagnetic radiation at 
the boundary surfaces on both light-cones. From the Lorentz-invariant nature of the 
zero-point electromagnetic radiation, the frequency spectrum is uniquely determined 
up to a multiplicative constant, as given by Boyer (1969), 

j # C  

I ( w )  = $hw3 (2) 

where $h is chosen as the multiplicative constant. (An upper limit of w must exist, 
otherwise the energy of the field would diverget.) The meaning of the invariance of the 
zero-point electromagnetic radiation under a Lorentz transformation is, as Boyer 
demonstrated, that the inertial observer who measures the energy of the radiation with 
the same band filter, which selects a frequency band between w and w +dw, obtains the 
same energy density regardless of the value of w and of his velocity. 

The derivation of the frequency spectrum of the zero-point radiation is as follows 
(Boyer 1969). Let the zero-point electromagnetic radiation be expressed by 

E(x, t )=Re J d3&&(&,~)h(w&)exp(iw&r-ikx-ie(kYh))  
2 

A = l  

2 k x & ( k ,  A )  
B(x, t )=Re 1 d3k h(wk) exp(iod-ikx-i@(k, A ) ) .  (3) 

A = 1  

Here E and B are the electric and magnetic field components of the radiation. The 

t In order that the total energy of the zero-point electromagnetic radiation be finite, a departure from the 
spectrum of equation (2) is to be expected at some high fre.qwn&s beyond which the present laws of physics 
may break down. A suggested upper limit of the frequency is ( ~ ~ / O h ) " ~ = l O ~ ~ s - ~ ,  where G is the 
gravitational constant; or alternatively at energy E = hw = io4' eV. 
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function h ( o k )  depends only on Wk = ck = c lkl because of the assumed isotropy of the 
radiation. e(&, A )  is the random phase to indicate the character of the radiation. Then 
the spectral density p ( o )  is calculated from (3) to be 

o2 W 1 
p ( w )  dw ZE- (E2+ B2) = I dw 2 h2(w).  

87r -W 
( 4 )  

In deriving the last part of equation (4), use is made of the random correlation between 
the random phases 6(k, A ) .  Using the Lorentz transformation formula for E, B, &, x and 
t, thus obtaining the corresponding primed variables, we have, by the same calculation 
by which equation (4) was derived, 

a0 

- 1 (Ez +B2) = d3k' h2(ok)y( l -s)  
87r 0 '=0  o k  

where &' and y are the Lorentz-transformed wavevector and the Lorentz factor, 
respectively. 

If several inertial observers measure the original density of the radiation with the 
same instrument with the same filter, which selects a frequency band between 01 = a to 
o2 = b for arbitrary but fixed constants a and b, they all obtain the same energy density. 
Therefore, equations (4) and ( 5 )  require that 

for any fixed a and b. Since the variable of integration is a dummy variable, and a and b 
are taken arbitrarily, this requires that 

or h 2 ( o )  must be a linear function of W .  By a suitable adjustment of the normalisation 
constants in the original radiation fields, we have exactly an electromagnetic zero-point 
energy &tho per normal mode: 

a 2 h 2 ( w )  = &W. 

The zero-point spectral density function p ( o )  is 

p(o)  = fiw3/27r2c3. (9) 

A fundamental difference between this radiation and the 2.7 K cosmic big-bang 
background radiation is that an inertial observer can find a relative velocity with respect 
to the latter radiation and can permanently absorb it, while with the former, due to the 
Lorentz-invariant nature of the radiation, this is not possible, as will be shown later. 

From the Lorentz-invariant nature of the zero-point radiation together with the 
postulate that the incoming and outgoing fields, Fin and F,,,, are to be regarded as the 
zero-point radiation, one can conclude that an emitter-absorber system can never 
permanently absorb the zero-point radiation, nor permanently emit an extra radiation 
going to CO or to -CO (for retarded or advanced radiation, respectively). This is because, 
if such radiation reaches the boundary surface at CO or -CO, the Fin or F,, would no 
longer be zero-point radiation at some frequencies, which contradicts our assumption 
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about Fin or Few. This is true for all inertial observers, because tfie zero-point radiation 
is Lorentz-invariant, so that the spectrum is independent of the velocity of the inertial 
observers. 

When an emitter-absorber system emits or absorbs zero-point radiation, there 
should exist another system which emits or absorbs the deficient or  excess component of 
the radiation other than the zero-point radiation, so that at both infinities Fin and F,,, 
should be identitied as an incoming or an outgoing zero-point radiation. The emitter- 
absorber system should include the other system, so that the whole system should be 
considered as an emitter-absorber system and the system cannot emit or absorb 
zero-point radiation of any frequency permanently. Thus, an emitter-absorber system 
absorbs the zero-point radiation temporarily, so that we cannot detect the existence of 
the zero-point radiation directly by measuring the permanent increase or decrease of 
the energy and momentum of the system due to the absorption or emission of the 
zero-point radiation, i.e. using the conservation laws of energy and momentum of the 
system. However, we can detect its existence by its effect exerted on a system through a 
‘quantum effect’ which is caused by the zero-point radiation when it goes through an 
emitter-absorber system by a multiple transaction such as double-photon emission 
from an ercited state of an atom. In this case the process does not violate the 
conservation laws of energy and momentum of the system, but the energy of the 
individual photon fluctuates due to the fluctuation of the zero-point radiation; this will 
be described later. 

In the following section we describc the relation between the Lorentz invariance of 
the zero-Fcint radiation and the emission and absorption of the radiation by an 
‘emitter-absorber’ system through a ‘transaction’. 

3. An extension of Cramer’s model of a minimum emitter-absorber transaction 

In the Wheeler-Feynman (1945) theory, an absorber is not a single atom nor a single 
system, but includes all absorbers in the universe, coherently connected in the absorp- 
tion process of the electromagnetic radiation emitted by an emitter at the centre. In the 
transaction model of Cramer (1980) a ‘minimum emitter-absorber transaction’ is 
defined as an emitter emitting a half-advanced field, $Fadv(emit), and a kalf-retarded field, 
$Frctcemit), and an absorber, by the influence of the retarded field of the emitter, sending a 
half-advanced field, $Fadv(ab),  and a half-retarded field, $Fretcab), in such a way that the 
emitter and the absorber exchange their fields. However, the emitter-absorber system, 
as a whole, does not emit any advanced or retarded field to the outside of the system 
(figure 1). Thus the following conditions hold for an emitter-absorber system as a 
whole: 

This is d e d  the minimum emitter-absorber transaction of type I, where the boundary 
means e boundary surface of the mini”  emitter-abeorber system. Since there is no 
emission or  absorption of the field by the emitter-absorber system when a transaction of 
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Absorber 

*Re + ) A ,  

l a )  l b )  

Figure 1. Transaction of type 1. In ( a )  the emitter (absorber) produces retarded and 
advanced fields, Re (R,) and A, (A,), respectively. Here, A, +A, = 0 in region I, and 
Re + R, = 0 in region 111. The transaction condition reduces the emitter-absorber system as 
if it were (b) ,  an ‘isolated’ system with transaction taking place only within the system. 

type I is concluded, the system is considered as isolated, and thus the energy and 
momentum of the system are strictly conserved under a transaction of type I. 

The existence of a zero-point radiation, which influences any system in the universe, 
requires that the transaction of type I already described above must be extended. When 
an emitter-absorber transaction of type I is concluded, the incoming zero-point 
radiation is absorbed at the emitter end and the outgoing zero-point radiation is emitted 
at the absorber end of the emitter-absorber system. 

Since the emitter-absorber system is self-contained, it behaves like an isolated 
system even under the influence of the zero-point radiation. The reason is the 
following. The emitter-absorber is stationary and inertial before and after the trans- 
action (i.e. when the system has attained a stationary state). If an emitter-absorber 
system absorbs zero-point radiation permanently, a transaction has to be concluded 
between the system and the past infinity, which together form a new emitter-absorber 
system. The incoming field from the boundary at the past infinity will no longer be a 
zero-point radiation, as postulated for Fin or F,,, in equation (l), and contradicts the 
Lorentz invariance (as seen from the observer sitting at the original inertial frame). This 
implies that the incoming zero-point radiation, which is temporarily absorbed by the 
system, should be re-emitted as an outgoing zero-point radiation when the emitter- 
absorber system has attained a stationary state. That is 

(-Fin) +Fout = 0 (11) 
for a transaction. We may consider the process in a different way. The emitter- 
absorber system absorbs the incoming zero-point radiation tentatively, but re-emits the 
same radiation as the outgoing radiation by the time the transaction is over. The 
condition for the type I transaction (i.e. equation (10)) and that for the general 
transaction are expressed by a single equation (1 1). We may consider this condition as 
that of the zero-point radiation just passing through the emitter-absorber system 



1250 K Imaeda and M Imaeda 

during the transaction, as if no interaction had taken place. We call this transaction a 
general transaction of type 1. Hereafter, a ‘transaction’ refers to a general transaction of 
type I unless otherwise stated (see figure 2). The application of the condition to a 
charged harmonic oscillator in a zero-point radiation will be given in $5. 

As mentioned above, the zero-point radiation can never be permanently absorbed. 
An emitter-absorber system absorbs or emits zero-point radiation temporarily, so that 
we have no way of detecting it directly except by detecting the increase or decrease of 
the energy or momentum of the system due to a permanent emission or absorption of it. 

One might, at first glance, think that the zero-point radiation cannot give rise to any 
physically observable effect on a physical system, as in the case of the energy levels of an 
atom. But this is not so in the case of a ‘double transaction’, which produces a different 
effect from the case discussed by Cramer, where zero-point radiation does not exist. We 
can detect the existence of the effect exerted on a system through a ‘quantum effect’, 
which is caused by zero-point radiation, but it does not violate conservation laws of 
energy and momentum. As will be described later, the effect manifests itself in the case 
when a system performs a multiple transaction. The incoming zero-point radiation is 
divided among the emitters and is emitted from different emitters of the emitter- 
absorber system. This will be shown in the Freedman-Clauser experiment, where two 
photons are emitted through a multiple ‘transaction’. 

Figure 2. Transaction of type I in the presence of zero-point radiation. In (a) the 
emitter-absorber system of type I is under the influence of zero-point radiation. When a 
transaction of type I is concluded, the system behaves as if no interaction with the zero-point 
radiation had taken place, i.e. ( b ) .  

4. Non-locality aspect of the Freedman418uwr experiment and the Wheeler- 
Fey-n absorber theory 

Cramer discussed the result of Freedman and Clauser’s experimental test of Bell’s 
inequality. A certain local hidden-variables theory of the second kind (see e.g. 
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Belinfante 1973) predicts Bell’s inequality, which gives a different prediction on the 
non-locality aspect from that of the quantum theory. Following the argument of 
Cramer we will describe the result of the Freedman and Clauser (1972) experiment 
within the framework of Wheeler-Feynman classical electrodynamics with zero-point 
radiation. 

A model of a more complex transaction process, e.g. Cramer’s simultaneous 
multiple type I transaction, which contains an emitter and several absorbers in the case 
of successive emission of photons, would require a multiple simultaneous confirmation 
from all the absorbers by sending advanced waves to the emitter; otherwise the process 
does not proceed. Cramer explains a double emitter-absorber transaction as follows. 
The excited calcium atom, for example, emits a number of probe waves, corresponding 
to the possible emission of a pair of photons, in various directions with various allowed 
polarisation correlations. If ‘verifying’ advanced waves are sent back by the pair of 
absorbers, then the transaction is completed and a double detection event has occurred. 
If the verifying waves do not match an allowed polarisation correlation, then they will 
not conclude the same transaction. When a zero-point radiation is present, a multiple 
transaction diagram, similar to that of Cramer, is obtained, as schematically shown in 
figure 3. When the incoming zero-point radiation absorbed at the emitter end is 
re-emitted from two or more absorber ends, the transaction condition, which is an 
extension of equation (ll), is 

(-Fin)+Fi:t +Fi:t +. . . = O  (12) 

where Fin and F:it are defined as in equation (10). In this sense the two transactions 
between e-al and e-a2 are coherent (see figure 3), and the two photons emitted in the 
process are also coherent. 

In the Freedman and Clauser experiment the directions of polarisation of the two 
photons are parallel and coherent. When each photon passes through each polariser it 
behaves as a single photon passing through two polarisers. Thus, the rate of coincidence 

Figure 3. Multiple transaction in the presence of zero-point radiation: two simultaneous 
transactions taking place between an emitter e and two absorbers al and at. The zero-FGint 
radiation absorbed at e is re-emitted from al and az as in (a) .  This can be considered as the 
zero-point radiation just passing through the system ( b ) ,  divided into two parts which differ 
in proportion to the two outgoing zero-point radiations for the different cases. 
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of each of the two parallelly polarised photons passing through an individual polarisa- 
tion filter is the same as that of a single photon passing through two pofarisers, such that 
it is governed by Malus's law for linearly polarised light, as found in classical elec- 
tromagnetic theory. The result also agrees with that of quantum theory. In this 
experiment the polarisation filters do not affect the zero-point radiation unless an 
emission-absorption system which includes the polariser is formed. Therefore the 
non-locality result of the Freedman and Clauser experiment is satisfactorily explained 
by Wheeler-Feynman classical electrodynamics, even in the presence of a zero-point 
radiation. A similar argument is valid for the experiment of Fry and Thompson (1976), 
which measures the linear polarisation correlation of photon pairs from the mercury 
atom, though the polarisation direction is parallel. 

As to the incompleteness aspect, both Wheeler-Feynman electrodynamics with 
zero-point radiation, and stochastic electrodynamics, are expected to hrhg some 
similar results, but not always so (e.g. the 'radiative balance'), as will be shown later. 

Using the Wheeler-Feynman absorber theory, we now derive the equation of 
motion of a charged particle in the electromagnetic fields of other charged particles and 
an external field, such as zero-point radiation, and compare it with that of Lorentz- 
Maxwell electrodynamics. From equation (l), 

Using 

$[FOUt -Fin] = ; p:e\ - F"' out ] 
all j 

and identifying that the term sF!Jt -F!Jv] is just the radiation damping term first 
obtained by Dirac (1938), we get from (1) the equation of motion of a charged particle 
of mass m, 

where y = 2e2/3c3. The dot indicates differentiation with respect to proper time, and 
Greek indices label the temporal and the spatial components. In the non-relativistic 
case, equation (14) reduces to 

where Rii = xi - x i ,  xi  are 4-coordinates of the ith particle, and Iret means that the value is 
evaluated at the retarded time. Comparing equation (15) with the radiation damping 
equation of a charged particle in stochastic electrodynamics, where 

(Fk = -EG), (16) m i : ( i ) w  = yx 4 i ) F  +y + e(i)Ek 

we see that the difference is the second term on the right-hand side of equation (15). The 
retarded potential term due to the retarded Coulomb interaction is replaced, in the case 
of stochastic electrodynamics, by an external field which cannot always be derived 
solely from the retarded interaction of the charged particle. 

Examining equations (13)-(16) we see that the advanced field of equation (13), 
which contributes to the non-locality aspect of the theory as discussed before, is 
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absorbed partly into the radiation damping term and partly into Fin in equation (14), 
and does not appear explicitly in equations (14)-(16). The advanced field effects arising 
from the radiation damping term, yi?(i’p of equation (16), such as the pre-acceleration 
effect of an electron, in the Maxwell-Lorentz theory are quite natural in our Wheeler- 
Feynman theory, although such effects are considered unphysical and the solutions are 
discarded in Maxwell-Lorentz electrodynamics. However as Cramer showed, the 
non-local nature of some physical phenomena can be solved using advanced fields. 
Thus, the positive effect of advanced fields is demonstrated to be indispensable in 
explaining the non-locality aspect of quantum phenomena. Note that equations (14) 
and (15) are quite similar to the corresponding equations for a radiating charged 
particle in stochastic electrodynamics. 

In the absence of the explicit form of advanced fields in Maxwell-Lorentz elec- 
trodynamics, and without the concept of a transaction of an emitter-absorber system, 
the non-locality nature of certain quantum phenomena, such as that of the result of 
Freedman and Clauser on the EPR paradox, remains difficult to explain within the 
framework of stochastic electrodynamics based on Maxwell-Lorentz electrodynamics. 
However, stochastic electrodynamics has had success in explaining certain quantum 
phenomena, as we have shown in P2. In this respect, stochastic electrodynamics 
predicts a different result from that of quantum mechanics as described by Marshall 
(1980). 

5. Example of a charged oscillator and the minimum emitter-absorber transaction 

To illustrate a minimum emitter-absorber transaction and the application of the 
transaction condition, we deal with a charged simple harmonic oscillator of mass m and 
charge e placed in a zero-point radiation. The equation of motion of the oscillator is 
given by taking the particle C as the oscillating particle: 

for particle C, where E( t )  is the zero-point radiation contribution. The equation can be 
considered as a special case of the equation derived from the Wheeler-Feynman 
absorber theory with zero-point radiation. 

The Hooke force -k2x acting on the particle C in (17) comes from the static 
approximation of the retarded potential of the other particles by replacing the velocity c 
in the retarded time by 00. From equation (15) 

By putting c = 00, 

is the static Coulomb potential due to the other particles J’ = 1,2, . . . , N. Assum- 
has a minimum at x = 0, we obtain the Hooke potential. E uation (16) is valid ing 

for finite values of x around the minimum point of the potential 9 0  
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For simplicity we deal with the one-dimensional oscillator. We may choose the 
configuration of a system of N + 1 charged particles consisting of a particle C and N 
very heavy charged particles, j = 1 , 2 ,  . . , N, so that the motion of all the N heavy 
particles may be ignored, except the motion of particle C around the minimum point of 
the potential constituting simple harmonic motion, and this is given by equation 
(17).  Thus, the non-relativistic equation of motion of the system in the vicinity of a 
minimum point x = 0 of the potential QfC’ in the Wheeler-Feynman theory with 
zero-point radiation is represented by equation (17).  The particle C performs a 
motion, absorbs the zero-point radiation, represented by E(t ) ,  and emits electromag- 
netic radiation which produces a radiation damping force of (2e2/3c3)x  on the charged 
particles. 

The charged oscillating particle, together with N heavy charged potential-produc- 
ing particles, considered as a minimum emitter-absorber system, was discussed in § 4 :  
there, the same charged oscillating particle acts as an emitter and at the same time as an 
absorber; but in the process of emission and absorption, the oscillating particle and N 
heavy particles act coherently to the outside interactions. The system of N + 1 particles 
together should be considered as a minimum emitter-absorber system concluding 
multiple transactions among themselves. The N heavy particles act as potential- 
producing particles, forming a background for the oscillating particle producing the 
Coulomb field in the static approximation. These N particles should be included in the 
emitter-absorber system. But these N particles do not emit or absorb sizable radiation 
through interaction with other systems, so that the charged particle appears to emit or 
absorb radiation by concluding transactions with other systems. 

This is the reason that the oscillating particle alone plays the role of an emitter- 
absorber system, and the N particles are receded in the background. Thus, the 
oscillating particle appears to conclude a transaction with itself by emitting or absorbing 
a radiation with other systems. The average energy per unit volume of the zero-point 
radiation is defined as 

where p ( o )  is the spectral density of the zero-point radiation given in equation (2) .  
Then, for the average rate of energy absorption by the oscillator, following the 
calculation of Boyer (1978), we obtain 

E, = (e iE( t ) )  = (2v’e2/3m)p(w) ,  

and the average rate of energy radiated by the oscillator is 

E, = (2e2/3c3)( i ’ )  = (2e2/3c3)w4((xz).  

As described in detail above, strictly speaking, a charged particle alone cannot form 
an emitter-absorber system. A charged particle, even performing a periodic motion, 
cannot conclude a transaction with itself, because, in order to conclude a transaction, 
both ends of the system must be connected by a null-line if an emitter-absorber system 
is to form at all. But the light-cone emanating from a point on the world-line of a 
particle cannot intersect any other point on the world-line of the same particle. We 
need to include a set of heavy particles which produces Hooke’s potential for a charged 
simple harmonic oscillator to form an emitter-absorber system, as described before. 

We have started from equation (17) which has a similar form to that of a charged 
simple harmonic oscillator in a Hooke potential which was constructed from the static 
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Coulomb potential of Maxwell-Lorentz electrodynamics. However, we can apply the 
emitter-absorber transaction idea to a charged simple harmonic oscillator because our 
theory is based on the Wheeler-Feynman theory. In the static Coulomb approxima- 
tion, the retarded and advanced fields of a charged particle are replaced by correspond- 
ing (instantaneous) fields propagating with infinite velocity. Denoting by F$iV and F:$ 
the fields (propagating with infinite velocity) of the jth particle (there are N such 
particles), which act on an oscillating particle C, the transaction condition is (as given by 
equation (1 1)) 

-Fin + Feu, = 0 
where 

N N 

;Fin = f[ F:2t + Fjz’ ] ,  $FOut = f[ F!iv + F:;?] 
j = l  j=l  

(see figure 4). 
The condition for a transaction of the minimum emitter-absorber system in a 

zero-point electromagnetic radiation for a simple harmonic oscillator gives the follow- 
ing condition: 

E a  = Eet (23) 

c 
j = l  j - 2  ... j = N  

N 

c I: 
,;I 

( U )  ( b  1 IC) 

Figure 4. Charged simple harmonic oscillator: In ( a )  particles j = 1,2, . . . , N are the source 
of the potential acting on a charged particle C. The advanced and retarded waves produced 
by the particles propagate with infinite velocities. The system is equivalent to a simple 
harmonic oscillator, where 

In (b) the system consists of N sub-emitter-absorber systems, which form a self-sustained 
emitter-absorber system, and a charged simple harmonic oscillating particle, which absorbs 
and emits zero-point radiation. In ( c )  all the radiation absorbed or emitted by N heavy 
particles can be neglected. 
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i.e. the energies absorbed and emitted by the oscillator during a transaction should be 
equal. Here, we may call the condition a ‘radiative balance’ condition, as in Boyer 
(1978). The condition of transaction for the oscillator implies that the energy and 
momentum are conserved for a transaction and that the oscillator (including the heavy 
particles) becomes, as a whole, a sort of isolated system. From equations (21) and (22) 
with transaction condition (23), we get the relation 

(2) = (7r2c3/mo4)p(w).  (24) 

(E)=($mi2+$3kx2). (25) 

The average energy (E) of the oscillator is obtained from equation (17): 

Using the energy balance equation (23), we find 

( E )  = (7r2c3/w2)p(o) .  (26) 
From equation (25) together with equation (19), we see that ( E ) / w  becomes a constant 
(adiabatically invariant) only when p ( w )  is a zero-point radiation given by 

P b )  = (w/7r2c3)(hw/2), 
and we have 

( E )  = ihw. 

The energy agrees with the lowest energy level of a harmonic oscillator in quantum 
mechanics. 

The simple harmonic oscillator which we considered to be an emitter-absorber 
system behaves as a self-sustained system: it emits and absorbs the same amount of 
zero-point radiation during a transaction. The system as a whole, attains the ‘radiative 
balance’ through the transaction condition. 

In the case of an excited oscillator system, in order that the transaction condition 
should hold, and the adiabatic invariance of the energy spectrum should be equated to 
(n  +$)fa, the radiative balance between E, and E, should satisfy, instead of equation 

(2n + l)Ee =E,. (28) 

For the simple harmonic oscillator in question, the oscillator has to be a multiple 
emitter-absorber system as considered before. The adiabatically invariant quantity 
(E) /@ is then 

(29) 

In an emitter-absorber system undergoing multiple transactions, the oscillating 
charged particle absorbs zero-point radiation over a number of periods of (2n + 1) 
cycles, coherently, and emits it as a radiation in a single transaction. The transaction 
condition for the simultaneous absorption of (2n + 1) absorbers ai (i = 1,2 ,  . . . , 2 n  + 1) 
and the emission by the emitter e (see figure 4) gives 

(30) 

(231, 

( ~ ) / w  = (n  + &. 

(2e2/3c3)(X2) = (2n + l)p(w). 

From equations (30) and (18), ( E ) / w  is an adiabatic constant and we obtain equation 

In the above consideration, a charged simple harmonic oscillator behaves as an 
emitter-absorber system and, as a whole, is considered as an adiabatic system (even 

(29). 
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under the influence of the zero-point radiation). The energy-momentum conservation 
holds for each internal transaction, so that the absorbed zero-point radiation is 
re-emitted by the system, and the system maintains the same energy and momentum. 
The system, even though under the constant influence of the zero-point radiation, 
maintains the same energy and momentum over a long period of time, so that it remains 
in a stationary state. 

The analogy may be extended to atoms which, even under the influence of a 
zero-point radiation, maintain a certain stability and a stationary state. The problem of 
atomic stability and the discreteness of the energy levels, in stochastic electrodynamics, 
may be solved quantitatively through the Kepler problem using the idea of a multiple 
transaction. In our model of an emitter-absorber transaction we can understand the 
stability of atoms, even in the presence of a zero-point radiation, as being a self- 
sustained system which strictly conserves the internal energy. 

In our transaction model of an emitter-absorber system (an extension of that of 
Cramer), when an observation is made, an object and the measuring apparatus form an 
emitter-absorber system. The transaction is concluded between the object and the 
measuring apparatus. The transaction condition guarantees the re-emission of the 
absorbed zero-point radiation from the system, and therefore guarantees that the 
conservation laws are strictly implemented. The energy-momentum conservation 
strictly holds, and the deviation from their average values cannot be observed unless the 
transition process is a multiple one; for example, a process involving the emission of 
more than one photon. In the case of the emission of two photons from an excited 
calcium atom, the energy and momentum of one of the photons distribute around the 
average value, as is explained below. 

Take, for example, the Freedman-Clauser experiment of successive decay of an 
excited calcium atom. From figure 3 we see that the energy-momentum variation of the 
photons due to the fluctuation of zero-point radiation, absorbed at the emitter and 
re-emitted at one of the absorber ends, is, from the transaction condition, given by 
equation (12): 

(3 1) 
In this equation one of the terms can be taken to be independent and to be a zero-point 
radiation. We choose Fb:t to be the independent term. Then, is given by 
equations (10) and (31), from which we can calculate the variance of the energy of the 
zero-point radiation. The quantity (1/8r)(E2 +Bz)  is averaged over a lifetime r of the 
intermediate state of the atom, which is considered to be the time needed to conclude 
the transaction and during which the zero-point radiation is absorbed and re-emitted. A 
difference between this and the corresponding result of stochastic electrodynamics is 
that our theory predicts exactly the same energy for the sum of the energy of the two 
photons, although the energy of the individual photon fluctuates. On the other hand, 
stochastic electrodynamics gives a dispersion in the sum of the energies of the two 
photons. 

-(Fin(t) + Fb't ( t ) )  =FbYt (t). 

6. Effect of cosmology 

In our theory, the total field acting on a particle is completely time-symmetric, as can be 
seen from equation (1). But a zero-point electromagnetic radiation is not time- 
reversible. Therefore, for an emitter-absorber system, when a transaction is 
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concluded, the time developments of the emitter and absorber are non-time-reversible, 
because the system absorbs and emits a non-time-reversible zero-point radiation. This 
non-time-reversibility of the emitter-absorber system will give an important insight 
into the measurement theory of quantum phenomena and will be discussed elsewhere. 
With regard to the zero-point electromagnetic radiation, the expansion of the universe 
has no effect on the spectrum, since the spectrum is Lorentz invariant and also invariant 
under adiabatic expansion of the radiation cavity (Boyer 1969). 

In an open universe the future absorber is incomplete. Whether or not the 
expanding universe acts as a radiation cavity for the zero-point radiation remains to be 
answered. The Lorentz-invariant character of the radiation prevents red-shift of the 
radiation. However, the upper limit to the validity of the spectrum may be affected by 
the expansion of the universe. It has been suggested that the frequency of ( C ’ / G ~ ) ’ ’ ~  - 

s-l or the energy E = hw - lo4’ eV may be the limit of the validity of the 
electrodynamics, or even of the laws of quantum physics. Therefore, the limit of the 
validity of the Lorentz-invariant spectrum of the zero-point electromagnetic radiation, 
in the expanding universe, may be the same as that of the laws of quantum mechanics. 
We note that the highest energy attainable at present is around lo2’ eV, which is much 
less than lo4* eV. Thus, the validity of the spectrum cannot be tested experimentally. 

A charged simple harmonic oscillator, or a system undergoing a periodic motion, 
which is performing a multiple emitter-absorber transaction within the system as 
described before, emitting and absorbing only the zero-point radiation for each 
transaction, can be considered to be in a stationary state. The lowest level of an atom 
may be such a system, and the adiabatic invariant quantity ( E ) / @  is a constant 
irrespective of the influence of zero-point electromagnetic radiation. The effect of an 
open universe on the execution of an emitter-absorber transaction of type I is not 
considered in this paper. The detectability of the effect of the future absorber deficiency 
in the expanding universe may be tested by an experiment using a transaction of type I1 
of Cramer, as discussed by Cramer. In this case an emitter-absorber transaction of type 
I1 involves two transactions between an emitter at the past infinity and an absorber at 
the future infinity, and emission and absorption including those do not originate in 
zero-point electromagnetic radiation (as suggested by Davies (1975)). 
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